Главная
 
ЖИЗНЬ АКВАРИУМА сайт об аквариумистикеПонедельник, 20.05.2024, 18:26



Приветствую Вас Гость | RSS
Главная
акваМЕНЮ

Перевести страницу
Select language

акваВХОД
Логин:
Пароль:

Выбираем тут
ОСОБЕННОСТИ СОДЕРЖАНИЯ ОБИТАТЕЛЕЙ АКВАРИУМА [11]
КОРМА И КОРМЛЕНИЕ [11]
РАЗВЕДЕНИЕ АКВАРИУМНЫХ РЫБ [2]
НАУКА В ПРАКТИКЕ АКВАРИУМНОГО РЫБОВОДСТВА [8]
ВРЕДИТЕЛИ РЫБ И МЕТОДЫ БОРЬБЫ С НИМИ [1]

Главная » Файлы » СЕКРЕТЫ АКВАРИУМНОГО РЫБОВОДСТВА » НАУКА В ПРАКТИКЕ АКВАРИУМНОГО РЫБОВОДСТВА

Основы селекции
14.02.2019, 18:49
Генетика — наука о наследственности и изменчивости живых организмов и методах управления ими. В ее основу легли закономерности наследственности, обнаруженные Г. Менделем при скрещивании различных сортов гороха (1865), а также мутационная теория X. Де Фриза.
Как уже говорилось, аквариумисту, решившему заняться селекцией рыб, желательно знать основные законы общей генетики и ознакомиться с частной генетикой рыб. Законы общей генетики справедливы для всех видов растений и животных, включая человека, а частная генетика изучает особенности передачи по наследству разных признаков конкретного вида. Можно говорить о частной генетике золотой рыбки, макропода, гуппи и т. д. Так как частная генетика подавляющего большинства обитателей наших аквариумов изучена очень слабо, аквариумисту-селекционеру приходится собственными силами изучать особенности наследования интересующих его признаков своими питомцами. Для этого как минимум необходимо знать основы общей генетики и уметь использовать простейшие методы гибридологического анализа.
Прежде всего восстановим в памяти терминологию.

 Ген — наследственный   фактор,   материальная   единица наследственности, ответственная за формирование признака. Входит в состав хромосом. Контролируя образование белков (ферментов и др.), гены управляют всеми химическими реакциями организма и таким образом определяют его признаки.

Признак —  отдельное качество организма, по которому можно отличать один организм от другого.
Наследственные признаки — признаки, в норме присущие особям данного вида или вновь возникшие в результате изменения генотипа (мутации) и воспроизводящиеся при размножении во всех последующих поколениях.

Мутации — наследуемые изменения генетического материала, внезапные, естественные или вызванные искусственно, приводящие к изменению тех или иных признаков организма. Именно мутации дают основной материал для естественного и искусственного отбора, являясь необходимым условием эволюции в природе и выведения новых разновидностей животных и растений.

Приобретенные признаки (модификации) — признаки, отсутствующие у предков данной особи и приобретенные организмом в течение его индивидуальной жизни. Приобретенные признаки не связаны с изменением генотипа, поэтому не наследуются потомством. Они возникают под влиянием специфических условий среды. Пределы этих изменений контролируются генотипом.

Признаки качественные (альтернативные, олигогенные) — признаки, контролируемые одним или немногими генами, действие которых отчетливо отграничено от действия ненаследственных факторов. Различия по качественным признакам устанавливаются непосредственно путем наблюдения или сравнения, без измерения или взвешивания. Они обладают прерывной изменчивостью и описываются по принципу «есть-нет»; например, красный, синий корпус у самца гуппи — есть у него пятно на груди или нет и т. д. Степень проявления качественных признаков почти не зависит от влияния среды.

Признаки количественные — признаки, с суммарным действием большого числа генов (полигены). Количественные признаки могут приобретать цифровое выражение, которое может устанавливаться не только глазомерно (большой, маленький), но и путем взвешивания, подсчета. Вследствие полигенного контроля и большой модификационной изменчивости под влиянием внешней среды количественные признаки обладают непрерывной изменчивостью. Они могут быть описаны по принципу «больше-меньше», то есть один и тот же признак, присущий разным особям или формам, имеет различную степень выражения. К количественным признакам относятся плодовитость рыб, число лучей в плавниках и др. Проявление количественных признаков в значительной степени зависит от условий внешней среды (температуры, характера питания и т. п.).
По характеру наследования признаки можно разделить на доминантные и рецессивные.

Признак доминантный — признак из пары противоположных признаков (например, окраска рыб, свойственная неодомашненным особям), проявляющийся у гетерозиготных особей вследствие подавления доминантным аллелем (А), определяющим развитие доминантного признака, рецессивного аллеля (а), ответственного за проявление противоположного — рецессивного признака. Например, дикая серая окраска гуппи доминирует над светлой.

Признак рецессивный — признак, не проявляющийся у гетерозиготной особи вследствие подавления действия рецессивного аллеля (а), контролирующего развитие рецессивного признака действием доминантного аллеля (А) этой же аллельной пары. Рецессивный признак проявляется только в том случае, если контролирующий его рецессивный аллель находится в гомозиготном состоянии. Например, альбинизм (красные глаза, отсутствие темного пигмента) рецессивен у всех животных, включая и рыб.

Кодоминантность — участие обоих аллелей в определении признака у гетерозиготной особи; частный случай доминантности.

Генотип — совокупность аллелей гена или группы генов, контролирующих анализируемый признак у данного организма (в этом случае нерассматриваемая часть генотипа выступает в качестве генотипической среды). Генотип даёт развитие, строение и жизнедеятельность организма, то есть совокупность всех признаков организма — его фенотип. Особи с разными генотипами могут иметь одинаковый фенотип, поэтому для определения генотипа организма необходимо проводить его генетический анализ, например анализирующее скрещивание. Особи с одинаковым генотипом в различных условиях могут отличаться одна от другой по характеру проявления признаков (особенно количественных), то есть различаться по фенотипу. Таким образом, генотип определяет возможные пути развития организма и его отдельных признаков во взаимодействии с внешней средой (например, гирардинус, выращенный при низких температурах, оказыватся темнее своих братьев и сестер, живущих при более высоких температурах).

Фенотип — совокупность всех признаков и свойств особи, формирующихся в процессе взаимодействия генотипической структуры (генотипа) и внешней по отношению к ней среды. В фенотипе не реализуются все генотипические возможности, и он является лишь частным случаем реализации генотипа в конкретных условиях. Поэтому даже между однояйцевыми близнецами, имеющими полностью идентичные генотипы, можно выявить заметные фенотипические различия, если они развивались в разных условиях.

Аллели (аллеломорфы, аллельные гены) — формы состояния одного и того же гена, находящиеся в гомологических участках (локусах) гомологичных хромосом и контролирующие развитие альтернативных признаков. Два аллеля у диплоидных организмов не могут находиться в одной гамете. Аллель — одно из возможных структурных состояний гена — определяет вариант развития одного и того же признака организма. Возникает при любом изменении структуры гена в результате мутаций или за счет внутригенных рекомбинаций (возможное число аллелей каждого гена неисчислимо). Наличием аллельных генов обусловлены фенотипические различия среди особей.

Гаметы — зрелые мужские сперматозоиды и женские (яйцеклетки) половые клетки, содержащие гаплоидное (половинное) вследствие редукции в мейозе число хромосом.

Зиготы — оплодотворенные яйцеклетки. Если сливаются обычные, редуцированные гаметы, зигота имеет двойное (диплоидное) число хромосом.

Гомозигота — диплоидная клетка или особь, гомологичные хромосомы которой несут идентичные аллели того или иного гена.

Гетерозигота — клетка или особь, у которой гомологичные хромосомы несут различные аллели (альтернативные формы) того или иного гена.
Ознакомление с перечисленными выше терминами позволит в более сжатом виде изложить те законы генетики, которые полезно вспомнить аквариумисту, решившему заняться селекцией рыб.
Теперь перейдем к рассмотрению основных законов генетики.

Закон единообразия гибридов первого поколения (первый закон Г. Менделя) утверждает, что потомство первого поколения от скрещиваний устойчивых форм, различающихся по одному признаку, имеет одинаковый фенотип по этому признаку. При этом все гибриды могут иметь фенотип одного из родителей (полное доминирование) или промежуточный фенотип (неполное доминирование), кроме этого, гибриды могут проявить признаки обоих родителей (кодоминирование). Этот закон основан на том, что при скрещивании двух гомозиготных по разным аллелям форм (АА и аа) все их потомки одинаковы по генотипу (гетерозиготы — Аа), а следовательно, и по фенотипу.
Иллюстрировать этот закон можно следующим примером: если скрестить рыбу любого вида, имеющую дикую окраску, с рыбой того же вида — альбиносом   (основной признак альбиноса — красные глаза, даже белая особь не с красными глазами не может считаться альбиносом), то в первом поколении мы получим всех без исключения потомков, имеющих доминантную дикую окраску. Если в первом поколении часть потомков — альбиносы, то родитель, имевший дикую окраску, был гетерозиготен.
Альбинизм у всех видов животных рецессивен. И при скрещивании с доминантами он, как все рецессивы, может появиться только во втором поколении. Скрещивание обозначают в генетике знаком умножения (X ) При написании схемы скрещивания принято на первом месте ставить женский пол. Женский пол обозначают знаком 9 (зеркало Венеры), мужской — d (щит и копье Марса). Родительские организмы, взятые в скрещивание, обозначают буквой Р. Потомство от скрещивания других особей с различной наследственностью называют гибридным, а отдельную особь — гибридом. Гибридное поколение обозначают буквой F с цифровым индексом, соответствующим порядковому номеру гибридного поколения (F1, F2, F3 и т.д.). Гибридов, получаемых от срещивания особей, различающихся по некоторым признакам, но относящихся к одному виду, называют внутривидовыми (иногда метисами, или помесями). Отдаленных гибридов, происшедших от скрещивания особей из разных видов и родов — соответственно межвидовыми и межродовыми.
Закон расщепления (второй закон Г. Менделя) гласит, что при скрещивании гибридов первого поколения между собой среди гибридов второго поколения в определенных соотношениях появляются особи с фенотипами исходных родительских форм и гибридов первого поколения. В случае полного доминирования выявляются 75% с доминантным и 25% с рецессивным признаком, то есть два фенотипа в соотношении 3:1. При небольшом количестве особей во втором поколении по теории вероятности от указанных соотношений могут быть существенные отклонения. Например, если потомков всего 4, то в их числе может не оказаться ни одного альбиноса (аа).
Существенные отклонения от указанных соотношений могут наблюдаться, если жизнеспособность гамет и зигот всех типов неодинакова.
Так, например, альбиносы менее жизнеспособны по сравнению с особями, имеющими дикий генотип;
их может оказаться значительно меньше, чем предполагалось по расчету.
При неполном доминировании и кодоминировании 50% гибридов второго поколения (F2) имеют фенотип гибридов первого поколения и по 25% — фенотипы исходных родительских форм, то есть наблюдается расщепление 1:2:1.
В основе второго закона лежит закономерное поведение пары гомологичных хромосом (с аллелями А и а), которые обеспечивают образование у гибридов первого поколения гамет двух типов, в результате чего среди гибридов второго поколения выявляются особи трех возможных генотипов в соотношении 1АА:2Аа:1аа.
Конкретные типы взаимодействия аллелей и дают расщепление по фенотипу в соответствии со вторым законом Г. Менделя.
Для того чтобы лучше понять суть первого и второго законов Г. Менделя, приведем рассказ известного генетика*,' аквариумиста Федора Михайловича Полканова (1970). Как-то он обнаружил в рыборазводне Московского зоопарка среди обычных барбусов суматранусов трех альбиносов с золотым телом, красными глазами и еле просвечивающимися темными полосами. Основные признаки альбиносов — красные глаза и неспособность вырабатывать темные пигменты. Пропадала полностью или почти полностью (неполный альбинизм) черная окраска, и рыба стала светлой без черных полос и пятен, желтой, золотистой, светло-зеленой, белой. Федор Михайлович взял альбиносов себе и вырастил. Все оказались самцами. Одного из самцов он скрестил с обычной, не золотой, самкой. Теоретически можно было ожидать три разных типа наследования. Все потомки от измененной рыбы (в данном случае от альбиноса) по виду могли оказаться измененными. Это означало бы, что измененный признак является доминантным. Второй случай — все потомки промежуточные. И третий — когда измененный признак не проявился ни у одного из потомков, иначе говоря, оказался рецессивным. Могло оказаться, что в потомстве обнаружатся и нормальные суматранусы с дикой серой окраской и альбиносы. Но это в том случае, если обычная, не золотая, самка оказалась бы гетерозиготной, то есть помесью обычного суматрануса с альбиносом.
Альбиносы обнаружены почти у всех видов рыб, встречаются они и у пресмыкающихся, и у птиц, и у млекопитающих, и даже у человека. Часто альбиносы менее жизнестойки и менее плодовиты, хуже растут. Но не всегда. Альбинизм — признак рецессивный.
Если родительские формы наследственно чисты, то в соответствии с первым законом Г. Менделя в первом поколении все потомки одинаковы, поэтому этот закон и называют законом единообразия первого поколения.
В опыте Федора Михайловича в первом поколении все барбусы, как и следовало ожидать, оказались обычными — ни одного золотого. Те, кто забыл первый закон Г. Менделя, разочаровались бы и прекратили опыт. Но Ф. М. Полканов был не только опытным аквариумистом, но и генетиком. Он понимал, что заинтересовавший его признак не пропал. Он вырастил потомков золотого самца и скрестил между собой. Часть мальков (примерно 1/4) оказалась альбиносами, а 3/4 — обычными барбусами. Три к одному. Это соотношение полностью соответствует_ второму закону Г. Менделя — закону расщепления, разделения гибридов второго поколения на исходные формы.
Еще несколько примеров. Все мы знаем барбусов семифасциолятусов и барбусов шуберти и думаем, что это разные виды. А оказывается это один и тот же вид. Ярко-лимонные шуберти возникли в результате мутации одного гена у барбуса семифасциолятуса. Немецкому аквариумисту удалось закрепить этот признак, и лимонные семифасциолятусы, мало похожие на своих предков, были описаны отдельным видом и названы по фамилии выведшего их аквариумиста. Барбус семифасциолятус и барбус шуберти — очень хорошие объекты для того, чтобы убедиться в справедливости первого и второго законов Г. Менделя. Их нетрудно развести. Скрестите их. Первое поколение не будет отличаться от семифасциолятусов, а во втором — примерно 75 % окажутся обычными семифасциолятусами, а 25% — шуберти.
Мало кто из аквариумистов не знает хифессобриконов серпас и минор. Оказывается это тоже один и тот же вид, минор — рецессивная форма, рецессивный вариант того же гена, который определяет окраску серпаса. Серпас обитает в реках Бразилии — в мутновато-коричневой воде. Мутация, в результате которой возник минор, позволила хифессобрико-ну расширить свой ареал и заселить участки реки с более светлой водой, на красноватой глинистой почве.
Если скрестить1 серпаса и минора, то как и в случае с барбусом, в первом поколении все потомки будут похожи на серпаса, а во втором — будет получено примерно 25% миноров и 75% серпасов.
Если скрестить серых гуппи со светлыми, то доминирующей будет серая фоновая окраска, рецессивной — светлая. В первом поколении будут получены только серые особи, во втором — примерно 75% серых и 25% светлых.
Вернемся к суматранусам. Для выведения альбиносов правильнее было бы скрещивать не рыб первого поколения между собой, а самок первого поколения с исходными золотыми самцами — их отцами (инбридинг на выдающегося производителя). В этом случае рецессивных потомков получилось бы не 25%, а 50%. Такой тип скрещивания называется анализирующим, но он полезен не только для анализа, но и с селекционными целями.

Закон независимого комбинирования (наследования) признаков (третий закон Г. Менделя) утверждает, что каждая пара альтернативных признаков ведет себя в ряду поколений независимо одна от другой, в результате чего среди потомков второго поколения в определенном соотношении появляются особи с новыми (по отношению к родительским) комбинациями признаков. Например, при скрещивании исходных форм, различающихся по двум признакам, во втором поколении выявляются особи с четырьмя фенотипами в соотношении :3:3:1 (случай полного доминирования). При этом два фенотипа имеют родительские сочетания признаков, а остальные два — новые. Этот закон основан на независимом поведении (расщеплении) нескольких пар гомологичных хромосом. Так, при дигибридном скрещивании это приводит к образованию у гибридов первого поколения четырех типов гамет (АВ, Ав, аВ, ав) и после образования зигот — к закономерному расщеплению по генотипу и соответственно по фенотипу.
Для селекционера важно знать, что чем больше он хочет совместить признаков, взятых из разных вариететов, тем труднее решить эту задачу, так как с увеличением количества совмещаемых признаков возрастает количество потомков второго поколения, которое необходимо выращивать, и выбрать для дальнейшей работы необходимое количество пар особей с  необходимыми  генотипами  и  фенотипами. Допустим, что поставлена задача вывести гуппи-гигантов со светлой основной (фоновой) окраской.
В нашем примере при дигибридном скрещивании мы имели четыре типа гамет АВ, Ав, аВ и ав; 16 их возможных комбинаций (42=16), число фенотипических классов — четыре (серые нормального размера, серые гиганты, светлые нормального размера и светлые гиганты) при девяти генотипических классах, из которых на долю гигантов пришелся только один. Если мы хотим вывести породную группу светлых гигантов, то, для того чтобы подобрать одну пару производителей, нужно иметь более 32 гибридов второго поколения (в том числе 16 самок и 16 самцов).
Установленные законом Г. Менделя в их классической форме соотношения проявляются не всегда.
Для выявления законов Г. Менделя в их классической форме необходимы:
гомозиготность исходных форм;
образование у гибридов гамет всех возможных типов в равных соотношениях, что обеспечивается правильным течением мейоза (редукционного деления клеточного ядра, предшествующего образованию половых клеток);
одинаковая жизнеспособность гамет всех типов;
равная вероятность встречи любых типов гамет при оплодотворении; одинаковая жизнеспособность зигот всех типов.
Нарушение этих условий может приводить либо к расщеплению в первом поколении, либо к искажению соотношения различных генотипов и фенотипов.
Кроме этого, нарушение соотношений, вытекающих из третьего закона Г. Менделя, наблюдается в случаях сцепления генов (явление, в основе которого лежит локализация генов в одной хромосоме, оно выражается в том, что аллели сцепленных генов, находящихся в одной группе сцепления, имеют тенденцию наследоваться совместно). Это приводит к образованию у гибрида гамет преимущественно с родительскими сочетаниями аллелей.
В целом законы Г. Менделя справедливы для аутосомных (обычных, не половых) генов с полной пенетрантностыо (частотой фенотипического проявления гена в популяции особей, являющихся его носителями). При полной пенетрантности доминантный или рецессивный гомозиготный аллель проявляется у каждой особи, в генотипе которой он имеется, с постоянной экспрессивностью (силой действия гена, характеризующейся степенью фенотипического проявления признака, контролируемого данным геном). Пенетрантность и экспрессивность зависят от взаимодействия данного гена с внешними условиями и генотипической средой (действием других генов).
Вспомнив законы Г. Менделя, можно приступить к изучению особенностей наследования интересущих признаков.
Для анализа характера наследования признаков (выявления характера доминирования и др.) применяется генетический (гибридологический) анализ. Классическая схема его предусматривает выделение исходных гомозиготных форм, получение от них гибридов первого поколения (Fi) и скрещивание их (Fi) между собой — получение гибридов второго поколения (F2). Однако для генетического анализа более эффективно скрещивание гибрида с одной из родительских форм, несущей данную пару аллелей в гомозиготном состоянии (возвратное — реципрокное скрещивание — бек-кросс). Беккросс обозначается как FB.
Все гаметы родительской формы будут нести доминантную аллель А, а у гибридов образуются гаметы двух сортов — с аллелями А и а. Поэтому в результате случайного сочетания этих гамет при оплодотворении в потомстве от такого скрещивания имеет место расщепление по генотипу в соотношении 2Аа:2АА, или 1:1, в то время, как расщепления по фенотипу не произойдет (1:0) — все особи в FB будут иметь дикую окраску.
Значительно больший интерес для генетического анализа представляет скрещивание гибрида Fi (Аа) с формой, гомозиготной по рецессивному гену (аа). Поскольку все гаметы этой формы несут рецессивную аллель, характер расщепления в потомстве по фенотипу будет соответствовать качеству гамет гибридного организма. В результате расщепление по гену окраски рыб окажется в соотношении 1Аа:1аа. По характеру расщепления в потомстве от такого скрещивания АаХаа можно проанализировать наследственную структуру гибрида по данному гену.
С помощью такого скрещивания из гибридов первого и из любого последующего поколения можно отобрать особей, гомозиготных по доминантному гену, от особей гетерозиготных.
Благодаря этому, скрещивание организма с исходной формой, гомозиготной по рецессивному гену, получило название анализирующего скрещивания. Как уже указывалось (пример с барбусом), такой тип скрещивания полезен и при выведении новых разновидностей.
Выше мы рассмотрели самое простое, главное, что необходимо знать аквариумисту, решившему заняться селекцией рыб. В практике встречаются значительно более сложные случаи и отклонения от законов Г. Менделя, исключения, которые, если с ними получше разобраться, оказываются не опровергающими, а, наоборот, подтверждающими эти фундаментальные законы. Из-за недостатка места мы не смогли обогатить текст достаточным количеством примеров и иллюстраций, рассмотреть особенности наследования при различных типах взаимодействия генов, сцепленное с полом наследование, влияние факторов внешней и внутренней (генотипической) среды на действие генов и т. д. Все это накладывает отпечаток на результаты скрещиваний, приводит к отклонениям от ожидаемых теоретических результатов. Но даже и знание того, что удалось осветить в Данной главе, может оказать существенную помощь в понимании результатов скрещиваний по какой бы системе они не проводились.
В заключение не мешает напомнить, что подавляющее большинство интересующих селекционера признаков проявляется в полной мере только при оптимальных условиях содержания и кормления рыб.
Категория: НАУКА В ПРАКТИКЕ АКВАРИУМНОГО РЫБОВОДСТВА | Добавил: oza
Просмотров: 5046 | Загрузок: 0 | Рейтинг: 5.0/1
Всего комментариев: 0
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]
аквазеленПОИСК

акваГЕОГРАФИЯ


Copyright MyCorp © 2024
Используются технологии uCoz